Lecture 14: Ito calculus

ثبت نشده
چکیده

Proof. Consider any sequence of partitions Πn = {0 = tn < tn < . . . < tn = 0 1 Nn T } such that Δ(Πn) = maxj |tn − tn| → 0. Additionally, suppose that the j+1 j sequence Πn is nested, in the sense the for every n1 ≤ n2, every point in Πn1 is also a point in Πn2 . Let X n = Xtn where j = max{i : ti ≤ t}. Then Xn is a t t j sub-martingale adopted to the same filtration (notice that this would not be the case if we instead chose right ends of the intervals). By the discrete version of the D-K inequality (see previous lectures), we have

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

The Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems

Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...

متن کامل

Lecture Notes on Stochastic Calculus (Part II)

2 Ito-Doeblin’s formula(s) 7 2.1 First formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Continuous semi-martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Integration by parts formula . . . . . . . . . . . ...

متن کامل

An Introduction to Malliavin Calculus with Applications to Economics

Preface These are unpolished lecture notes from the course BF 05 " Malliavin calculus with applications to economics " , which I gave at the Norwegian School of Economics and Business Administration (NHH), Bergen, in the Spring semester 1996. The application I had in mind was mainly the use of the Clark-Ocone formula and its generalization to finance, especially portfolio analysis, option prici...

متن کامل

Generalized Synchronization Trees

[1] J. Ferlez, R. Cleaveland, and S. Marcus. Generalized synchronization trees. In FOSSACS 2014, volume 8412 of Lecture Notes in Computer Science, pages 304–319, Grenoble, France, 2014. Springer-Verlag. [2] Robin Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer Science. Springer-Verlag, 1980. [3] Edward Dean Tate Jr, Jessy W. Grizzle, and Huei Peng. Shortest p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013